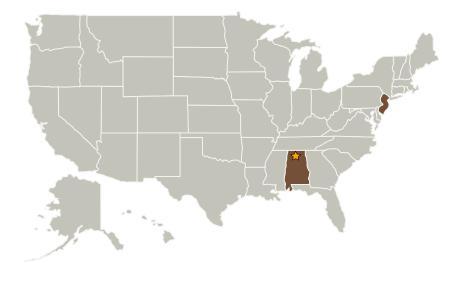
Small Business Innovation Research/Small Business Tech Transfer

## A Non-Volatile SRAM For Spaceborne Applications Using a Novel Ferroelectric Non-Linear Dielectric, Phase I




Completed Technology Project (2006 - 2006)

#### **Project Introduction**

A ferroelectric non-linear dielectric was recently discovered that, in their film form, possess a number of properties that make it an excellent choice for radiation-hardened electronics, particularly a radiation hardened (total dose hardened and SEE immune) non-volatile (NV) static random access memory (SRAM). Electrical measurements of these films demonstrated a relatively low dielectric constant (~20), an inherent ability to form a native buffer layer when deposited directly on silicon, and a strong polarization hysteresis effect. These results indicate that this film may be used to replace the two n-channel and two p-channel transistors in a traditional 4-T SRAM latch cell with two nchannel and two p-channel non-linear dielectric field effect transistors (NLDFETs). The threshold voltage hysteresis effect of the NLDFET should achieve full SEU immunity to at least 80MeV-cm2/mg of ionizing radiation, when used in a standard 6-transistor SRAM cell structure, thus have ultra-fast access times (like commercial SRAMs) while offering full non-volatility. In Phase I we will provide the device proof of concept, then in Phase II build a prototype memory. Phase III will see commercialization by licensing and sales. The resulting NV-SRAM products have the potential to be orders of magnitude faster than any existing EEPROM or FLASH devices because the nonlinear dielectric film forms a native dielectric with silicon giving the structure resistance to "wear-out" or "data-retention" problems. Finally, the SMI material is fully compatible with CMOS processing and has been accepted into major commercial silicon fabrication lines as a high-k dielectric for linear applications.

#### **Primary U.S. Work Locations and Key Partners**





A Non-Volatile SRAM For Spaceborne Applications Using a Novel Ferroelectric Non-Linear Dielectric, Phase I

#### **Table of Contents**

| Project Introduction          |   |  |
|-------------------------------|---|--|
| Primary U.S. Work Locations   |   |  |
| and Key Partners              | 1 |  |
| Organizational Responsibility |   |  |
| Project Management            |   |  |
| Technology Areas              |   |  |

### Organizational Responsibility

### Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### Lead Center / Facility:

Marshall Space Flight Center (MSFC)

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer



#### Small Business Innovation Research/Small Business Tech Transfer

# A Non-Volatile SRAM For Spaceborne Applications Using a Novel Ferroelectric Non-Linear Dielectric, Phase I



Completed Technology Project (2006 - 2006)

| Organizations<br>Performing Work      | Role                       | Туре           | Location                  |
|---------------------------------------|----------------------------|----------------|---------------------------|
| ↑Marshall Space Flight Center(MSFC)   | Lead<br>Organization       | NASA<br>Center | Huntsville,<br>Alabama    |
| Structured Materials Industries, Inc. | Supporting<br>Organization | Industry       | Piscataway,<br>New Jersey |

| Primary U.S. Work Locations |            |
|-----------------------------|------------|
| Alabama                     | New Jersey |

#### **Project Management**

**Program Director:** 

Jason L Kessler

**Program Manager:** 

Carlos Torrez

### **Technology Areas**

└ TX02.1 Avionics

#### **Primary:**

- TX02 Flight Computing and Avionics
  - Component Technologies

    TX02.1.1 Radiation
    Hardened Extreme
    Environment
    Components and

Implementations

